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1 Introduction to Field Theory

1.1 Field extensions

Definition 1.1. A field E is an extension field (or extension) of a field F if F is a
subfield of E.

We often write E/F to denote that E is an extension of F . F is called the ground
field of E/F . E is an F -vector space. If E is finite dimensional over F , we say that E/F
is a finite extension.

Definition 1.2. Let E be finite dimensional over F . Then the degree [E : F ] is dimF (E).

Definition 1.3. Let S ⊆ E. We say S generates E/F if E is the smallest subfield of E
containing F and S.

If S = {α1, . . . , αn}, we write E = F (α1, . . . , αn).

Lemma 1.1. Every field F is an extension of Q if char(F ) = 0 and Fp if char(F ) = p.

Proof. Q or Fp here is the subfield generated by 1.

Definition 1.4. An intermediate field E′ in E/F is a subfield of E containing F .

Example 1.1. Q(i) and Q(
√

2) are intermediate fields of C/Q.

Note that Q(i) = Q[i] ⊆ C and Q(
√

2) = Q[
√

2] ⊆ C. This is not always the case.

Example 1.2. Let Q(x) = {f/g : f, g ∈ Q[x], g 6= 0}. The field of rational functions is
Q(Q[x]). Q(x) 6= Q[x]

Lemma 1.2. Let E/F be an extension and α ∈ E. Then F (α) = Q(F [α]).

Proof. F (α) is the smallest subfield containing F ∪ {α}. F [α] is the smallest subring
containing F ∪{α}. The inclusion ι : F [α]→ F (α) is injective and induces an isomorphism
Q(F [α])→ F (α) of fields.
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1.2 Algebraic extensions, minimal polynomials, and splitting fields

Definition 1.5. If E/F is an extension and α ∈ E, then α is algebraic (over F ) if
F [α] = F (α) and transcendental otherwise. E/F is algebraic if every α ∈ E is algebraic
over F and transcendental otherwise.

Proposition 1.1. If α ∈ E is algebraic over F . then there exists a unique monic irreducible
polynomial f ∈ F [x] such that f(α) = 0. Moreover, F [x]/(f) ∼= F (α) by sending g(x) 7→
g(α).

This f is called the minimal polynomial of α over F .

Proof. Note that 1/α = g(α) for some g ∈ F [x]. Then αg(α)− 1 = 0. Set h = xg(x)− 1.
There exists a monic irreducible f | h such that f(α) = 0. If p ∈ F [x] satisfies p(α) = 0
and f - p, then (f, p) = (1). But the ideal generated by α is not trivial. So f | p. The last
statement follows.

Corollary 1.1. If α is algebraic over F , then F (α)/F is finite of degree equal to the degree
of the minimal polynomial of α with basis {1, α, . . . , αn−1} over F .

Proposition 1.2. If E/F is finite and α ∈ E, then α is algebraic.

Proof. The set {1, α, . . . , α[E:F ]} is linearly depedent. The relation gives a polynomial with
α as a root.

Corollary 1.2. If E/F is finite, then E = F (α1, . . . , αn) for some α1, . . . , αn ∈ E.

Theorem 1.1 (Kronecker). Given nonconstant f ∈ F [x], there exists E/F such that E
contains a root of F .

Proof. Take F [x]/(g), where g is monic, irreducible, and g | f .

Definition 1.6. A splitting field for nonconstant f ∈ F [x] is a field E in which f factors
into a product of linear polynomials.

Corollary 1.3. For any nonconstant f ∈ F [x], there exists a splitting field for f over F .

Example 1.3. A splitting field for x3−2 (over Q) in C is Q( 3
√

2, ω 3
√

2, ω2 3
√

2) = Q(ω, 3
√

2),
where ω = e2πi/3.
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1.3 Degrees of extensions

Theorem 1.2. If K/E and E/F are extensions, A is a basis of E/F , and B is a basis of
K/E, then AB ∼= A×B is a basis of K/F .

Proof. If γ ∈ K, then γ =
∑
cjβj , where cj ∈ E. Then cj =

∑
di,jαi, where αi ∈ f . So

γ =
∑

i

∑
j di,jαiβj . So AB spans K. If

∑
(
∑
ai,jαi)βj = 0, then

∑
ai,jαi = 0 for all j.

Then ai,j = 0 for all i, j.

Corollary 1.4. If K/E and E/F are finite, then [K : F ] = [K : E][E : F ].

Definition 1.7. Let E,E′ ⊆ K be subfields. The compositum EE′ is the smallest
subfield of K containing E and E′.

Example 1.4. If E/F , then E(α) = EF (α).

Example 1.5. F (α, β) := F (α)(β) = F (α)F (β).

Proposition 1.3. If E,E′ are finite over F and contained in K, A is a basis of E/F , and
B is a basis of E′/F , teen AB spans EE′.

Proof. LetA = {α1, . . . , αm} andB = {β1, . . . , βn}. Then EE′ = F (α1, . . . , αm, β1, . . . , βn) =
F [α1, . . . , αm, β1, . . . , βn]. Note that αi11 · · ·αimm ∈ E is a linear combination over F of the
αis. Similarly for the βjs in E′. So the αiβjs span EE′.

Corollary 1.5.
[EE′ : F ] ≤ [E : F ][E′ : F ].

Corollary 1.6. If [E : F ] and [E′ : F ] are relatively prime, we get equality.

Proof. [E : F ] and [E′ : F ] divide [EE′ : F ].

Example 1.6. Consider Q( 3
√

2, ω3 3
√

2), where ω2 + ω + 1 = 0. Then

[Q(
3
√

2) : Q][Q(ω3 3
√

2) : Q] = 9, [Q(
3
√

2, ω) : Q] = [Q(
3
√

2) : Q][Q(ω) : Q] = 6.

Proposition 1.4. Let Ei be subfields of K containing F for all i in some index set I. The
the compositum E of all Ei is

⋃
F (α1, . . . , αn), where n ≥ 0, and each αj is in some Ei.
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